Earth planet

EARTH PLANET Earth, third planet from the Sun and the fifth largest planet in the solar system in terms of size and mass. Earth’s name in English, the international language of astronomy, derives from Old English and Germanic words for ground and earth, and it is the only name for a planet of the solar system that does not come from Greco-Roman mythology. It is designated by the symbol ♁. Its single most outstanding feature is that its near-surface environments are the only places in the universe known to harbour life.Concurrent sea voyages provided practical proof that Earth is a globe, just as Galileo’s use of his newly invented telescope in the early 17th century soon showed various other planets to be globes as well. The polar regions also would appear a brilliant white, because of the clouds above and the snow and ice below. Also prominent would be the growth and recession of the winter snowcap across land areas of the Northern Hemisphere.
Scientists have applied the full battery of modern instrumentation to studying Earth in ways that have not yet been possible for the other planets; thus, much more is known about its structure and composition. The discussion complements other treatments oriented to the Earth sciences and life sciences. This detailed knowledge, in turn, provides deeper insight into the mechanisms by which planets in general cool down, by which their magnetic fields are generated, and by which the separation of lighter elements from heavier ones as planets develop their internal structure releases additional energy for geologic processes and alters crustal compositions. Earth’s surface is traditionally subdivided into seven continental masses: Africa, Antarctica, Asia, Australia, Europe, North America, and South America. The solid Earth as a field of study is covered in geologic sciences, the methods and instruments employed to investigate Earth’s surface and interior are discussed in Earth exploration, and the history of the study of Earth from antiquity to modern times is surveyed in Earth sciences. However, it is convenient to consider separate parts of Earth in terms of concentric, roughly spherical layers. It was only after the dawn of the space age, however, when photographs from rockets and orbiting spacecraft first captured the dramatic curvature of Earth’s horizon, that the conception of Earth as a roughly spherical planet rather than as a flat entity was verified by direct human observation. Earth’s figure and dimensions are discussed in the article geodesy. Easiest to see through a large telescope would be its atmospheric features, chiefly the swirling white cloud patterns of midlatitude and tropical storms, ranged in roughly latitudinal belts around the planet. The behaviour of the atmosphere and of its tenuous, ionized outer reaches is treated in atmosphere, while the water cycle and major hydrologic features are described in hydrosphere, ocean, and river. Humans first witnessed Earth as a complete orb floating in the inky blackness of space in December 1968 when Apollo 8 carried astronauts around the Moon. Its magnetic field is treated in the article geomagnetic field. Over the course of the seasons, some changes in the storm patterns and cloud belts on Earth would be observed. The geologic and biological development of Earth, including its surface features and the processes by which they are created and modified, are discussed in geochronology, continental landform, and plate tectonics. The early evolution of the solid Earth and its atmosphere and oceans is covered in geologic history of Earth. Not only do they constitute a modest fraction of the land area, which itself is less than one-third of Earth’s surface, but they are often obscured by clouds. Since the Copernican revolution of the 16th century, at which time the Polish astronomer Nicolaus Copernicus proposed a Sun-centred model of the universe (see heliocentric system), enlightened thinkers have regarded Earth as a planet like the others of the solar system. Robotic space probes on their way to destinations beyond Earth, such as the Galileo and the Near Earth Asteroid Rendezvous (NEAR) spacecraft in the 1990s, also looked back with their cameras to provide other unique portraits of the planet.
Viewed from another planet in the solar system, Earth would appear bright and bluish in colour. The global ecosystem of living organisms and their life-supporting stratum are detailed in biosphere. These continents are surrounded by five major bodies of water: the Arctic, Atlantic, Indian, Pacific, and Southern oceans. Extending from the interior outward, these are the core, the mantle, the crust (including the rocky surface), the hydrosphere (predominantly the oceans, which fill in low places in the crust), the atmosphere (itself divided into spherical zones such as the troposphere, where weather occurs, and the stratosphere, where lies the ozone layer that shields Earth’s surface and its organisms against the Sun’s ultraviolet rays), and the magnetosphere (an enormous region in space where Earth’s magnetic field dominates the behaviour of electrically charged particles coming from the Sun).The rotation period, or length of a sidereal day (see day; sidereal time)—23 hours, 56 minutes, and 4 seconds—is similar to that of Mars. The planet orbits the Sun in a path that is presently more nearly a circle (less eccentric) than are the orbits of all but two of the other planets, Venus and Neptune. Jupiter and most asteroids have days less than half as long, while Mercury and Venus have days more nearly comparable to their orbital periods. The direction of revolution—counterclockwise as viewed down from the north—is in the same sense, or direction, as the rotation of the Sun; Earth’s spin, or rotation about its axis, is also in the same sense, which is called direct or prograde. The 23.44° tilt, or inclination, of Earth’s axis to its orbital plane, also typical, results in greater heating and more hours of daylight in one hemisphere or the other over the course of a year and so is responsible for the cyclic change of seasons. The mean distance of Earth from the Sun is about 149,600,000 km (92,960,000 miles). Earth makes one revolution, or one complete orbit of the Sun, in about 365.25 days. Knowledge about these divisions is summarized in this astronomically oriented overview. Beneath the changing patterns of clouds would appear the much darker blue-black oceans, interrupted by occasional tawny patches of desert lands. The green landscapes that harbour most human life would not be easily seen from space.The Moon is one of the bigger natural satellites in the solar system; only the giant planets have moons comparable or larger in size. With an equatorial radius of 6,378 km (3,963 miles), Earth is the largest of the four inner, terrestrial (rocky) planets, but it is considerably smaller than the gas giants of the outer solar system. Earth has a single natural satellite, the Moon, which orbits the planet at a mean distance of about 384,400 km (238,900 miles). Some planetary astronomers consider the Earth-Moon system a double planet, with some similarity in that regard to the dwarf planet Pluto and its largest moon, Charon.In turn, the Moon’s mass—relatively large for a natural satellite—exerts a gravitational force that causes tides on Earth. The Sun, much more distant but vastly more massive, also raises tides on Earth. The movement of the water throughout the ocean basins as a result of the tides (as well as, to a lesser extent, the tidal distortion of the solid Earth) dissipates orbital kinetic energy as heat, producing a gradual slowing of Earth’s rotation and a spiraling outward of the Moon’s orbit. Departures from the spherical shape and the effect of Earth’s rotation cause gravity to vary with latitude over the terrestrial surface. The average gravitational acceleration at sea level is about 980 cm/sec2 (32.2 feet/sec2). Earth’s gravity keeps the Moon in its orbit around the planet and also generates tides in the solid body of the Moon. (For additional orbital and physical data, see the table.). Such deformations are manifested in the form of slight bulges at the lunar surface, detectable only by sensitive instruments. Currently this slowing lengthens the day by a few thousandths of a second per century, but the rate of slowing varies with time as plate tectonics and sea-level changes alter the areas covered by inland bays and shallow seas. Earth’s gravitational field (see gravitation) is manifested as the attractive force acting on a free body at rest, causing it to accelerate in the general direction of the centre of the planet. (See celestial mechanics: Tidal evolution.) The tides are most apparent as the twice-daily and daily rises and falls of the ocean water, although tidal deformations occur in the solid Earth and in the atmosphere as well (see tide).

Comments

Popular posts from this blog

ADOLF HITLER

DUBAI CITY

INDIA COUNTRY